skip to main content


Search for: All records

Creators/Authors contains: "Middleton, Carver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wearable stretch sensors have potential applications across many fields including medicine and sports, but the accuracy of the data produced by the sensors over repeated uses is largely unknown due to a paucity of high-cycle fatigue (HCF) studies on both the materials comprising the sensors and the signal produced by the sensors. To overcome these limitations, using human physiologically-based parameters, stretch sensors were subjected to quasi-static testing and HCF with simultaneous capture of the signal. The strain produced by the sensor was then compared to the strain produced by testing instrument, and the results suggest that the output from the stretch sensors is strongly correlated with output from the testing instrument under quasi-static conditions; however, this correlation deteriorates under fatigue conditions. Such deterioration may be the result of several factors, including a mismatch between the material response to fatiguing and the signal response to fatiguing. From a materials perspective, the shape of the stress-life curve for the polymers comprising the sensors conforms to the Rabinowitz-Beardmore model of polymer fatigue. Based on these results, consideration of the material properties of a stretch sensor are necessary to determine how accurate the output from the sensor will be for a given application.

     
    more » « less
  2. Abstract The development of wearable technology, which enables motion tracking analysis for human movement outside the laboratory, can improve awareness of personal health and performance. This study used a wearable smart sock prototype to track foot–ankle kinematics during gait movement. Multivariable linear regression and two deep learning models, including long short-term memory (LSTM) and convolutional neural networks, were trained to estimate the joint angles in sagittal and frontal planes measured by an optical motion capture system. Participant-specific models were established for ten healthy subjects walking on a treadmill. The prototype was tested at various walking speeds to assess its ability to track movements for multiple speeds and generalize models for estimating joint angles in sagittal and frontal planes. LSTM outperformed other models with lower mean absolute error (MAE), lower root mean squared error, and higher R -squared values. The average MAE score was less than 1.138° and 0.939° in sagittal and frontal planes, respectively, when training models for each speed and 2.15° and 1.14° when trained and evaluated for all speeds. These results indicate wearable smart socks to generalize foot–ankle kinematics over various walking speeds with relatively low error and could consequently be used to measure gait parameters without the need for a lab-constricted motion capture system. 
    more » « less
  3. Motion capture is the current gold standard for assessing movement of the human body, but laboratory settings do not always mimic the natural terrains and movements encountered by humans. To overcome such limitations, a smart sock that is equipped with stretch sensors is being developed to record movement data outside of the laboratory. For the smart sock stretch sensors to provide valuable feedback, the sensors should have durability of both materials and signal. To test the durability of the stretch sensors, the sensors were exposed to high-cycle fatigue testing with simultaneous capture of the capacitance. Following randomization, either the fatigued sensor or an unfatigued sensor was placed in the plantarflexion position on the smart sock, and participants were asked to complete the following static movements: dorsiflexion, inversion, eversion, and plantarflexion. Participants were then asked to complete gait trials. The sensor was then exchanged for either an unfatigued or fatigued plantarflexion sensor, depending upon which sensor the trials began with, and each trial was repeated by the participant using the opposite sensor. Results of the tests show that for both the static and dynamic movements, the capacitive output of the fatigued sensor was consistently higher than that of the unfatigued sensor suggesting that an upwards drift of the capacitance was occurring in the fatigued sensors. More research is needed to determine whether stretch sensors should be pre-stretched prior to data collection, and to also determine whether the drift stabilizes once the cyclic softening of the materials comprising the sensor has stabilized. 
    more » « less
  4. Cullum, Brian M. ; McLamore, Eric S. ; Kiehl, Douglas (Ed.)
  5. Cullum, Brian M. ; McLamore, Eric S. ; Kiehl, Douglas (Ed.)
  6. null (Ed.)
    This paper presents a retrospective of the benchmark testing methodologies developed and accumulated into the stretch sensor tool kit (SSTK) by the research team during the Closing the Wearable Gap series of studies. The techniques developed to validate stretchable soft robotic sensors (SRS) as a means for collecting human kinetic and kinematic data at the foot-ankle complex and at the wrist are reviewed. Lessons learned from past experiments are addressed, as well as what comprises the current SSTK based on what the researchers learned over the course of multiple studies. Three core components of the SSTK are featured: (a) material testing tools, (b) data analysis software, and (c) data collection devices. Results collected indicate that the stretch sensors are a viable means for predicting kinematic data based on the most recent gait analysis study conducted by the researchers (average root mean squared error or RMSE = 3.63°). With the aid of SSTK defined in this study summary and shared with the academic community on GitHub, researchers will be able to undergo more rigorous validation methodologies of SRS validation. A summary of the current state of the SSTK is detailed and includes insight into upcoming experiments that will utilize more sophisticated techniques for fatigue testing and gait analysis, utilizing SRS as the data collection solution. 
    more » « less
  7. A novel wearable solution using soft robotic sensors (SRS) has been investigated to model foot-ankle kinematics during gait cycles. The capacitance of SRS related to foot-ankle basic movements was quantified during the gait movements of 20 participants on a flat surface as well as a cross-sloped surface. In order to evaluate the power of SRS in modeling foot-ankle kinematics, three-dimensional (3D) motion capture data was also collected for analyzing gait movement. Three different approaches were employed to quantify the relationship between the SRS and the 3D motion capture system, including multivariable linear regression, an artificial neural network (ANN), and a time-series long short-term memory (LSTM) network. Models were compared based on the root mean squared error (RMSE) of the prediction of the joint angle of the foot in the sagittal and frontal plane, collected from the motion capture system. There was not a significant difference between the error rates of the three different models. The ANN resulted in an average RMSE of 3.63, being slightly more successful in comparison to the average RMSE values of 3.94 and 3.98 resulting from multivariable linear regression and LSTM, respectively. The low error rate of the models revealed the high performance of SRS in capturing foot-ankle kinematics during the human gait cycle. 
    more » « less